3.1194 \(\int \frac{A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2 \sqrt{\sec (c+d x)}} \, dx\)

Optimal. Leaf size=166 \[ \frac{(A-5 C) \sin (c+d x)}{3 a^2 d (\cos (c+d x)+1) \sqrt{\sec (c+d x)}}+\frac{(A-5 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a^2 d}+\frac{4 C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac{(A+C) \sin (c+d x)}{3 d \sec ^{\frac{3}{2}}(c+d x) (a \cos (c+d x)+a)^2} \]

[Out]

(4*C*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^2*d) + ((A - 5*C)*Sqrt[Cos[c + d*x]]*
EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*a^2*d) - ((A + C)*Sin[c + d*x])/(3*d*(a + a*Cos[c + d*x])^2*S
ec[c + d*x]^(3/2)) + ((A - 5*C)*Sin[c + d*x])/(3*a^2*d*(1 + Cos[c + d*x])*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.388971, antiderivative size = 166, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.171, Rules used = {4221, 3042, 2977, 2748, 2641, 2639} \[ \frac{(A-5 C) \sin (c+d x)}{3 a^2 d (\cos (c+d x)+1) \sqrt{\sec (c+d x)}}+\frac{(A-5 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a^2 d}+\frac{4 C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac{(A+C) \sin (c+d x)}{3 d \sec ^{\frac{3}{2}}(c+d x) (a \cos (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[(A + C*Cos[c + d*x]^2)/((a + a*Cos[c + d*x])^2*Sqrt[Sec[c + d*x]]),x]

[Out]

(4*C*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^2*d) + ((A - 5*C)*Sqrt[Cos[c + d*x]]*
EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*a^2*d) - ((A + C)*Sin[c + d*x])/(3*d*(a + a*Cos[c + d*x])^2*S
ec[c + d*x]^(3/2)) + ((A - 5*C)*Sin[c + d*x])/(3*a^2*d*(1 + Cos[c + d*x])*Sqrt[Sec[c + d*x]])

Rule 4221

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rule 3042

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x
])^(n + 1))/(f*(b*c - a*d)*(2*m + 1)), x] + Dist[1/(b*(b*c - a*d)*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)
*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2
) + C*(b*c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] &&
NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rule 2977

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x]
)^n)/(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n -
1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x],
x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ
[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2 \sqrt{\sec (c+d x)}} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^2} \, dx\\ &=-\frac{(A+C) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2 \sec ^{\frac{3}{2}}(c+d x)}+\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{\cos (c+d x)} \left (\frac{3}{2} a (A-C)+\frac{1}{2} a (A+7 C) \cos (c+d x)\right )}{a+a \cos (c+d x)} \, dx}{3 a^2}\\ &=-\frac{(A+C) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2 \sec ^{\frac{3}{2}}(c+d x)}+\frac{(A-5 C) \sin (c+d x)}{3 a^2 d (1+\cos (c+d x)) \sqrt{\sec (c+d x)}}+\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\frac{1}{2} a^2 (A-5 C)+6 a^2 C \cos (c+d x)}{\sqrt{\cos (c+d x)}} \, dx}{3 a^4}\\ &=-\frac{(A+C) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2 \sec ^{\frac{3}{2}}(c+d x)}+\frac{(A-5 C) \sin (c+d x)}{3 a^2 d (1+\cos (c+d x)) \sqrt{\sec (c+d x)}}+\frac{\left ((A-5 C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{6 a^2}+\frac{\left (2 C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx}{a^2}\\ &=\frac{4 C \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{a^2 d}+\frac{(A-5 C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 a^2 d}-\frac{(A+C) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2 \sec ^{\frac{3}{2}}(c+d x)}+\frac{(A-5 C) \sin (c+d x)}{3 a^2 d (1+\cos (c+d x)) \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 1.40048, size = 267, normalized size = 1.61 \[ \frac{e^{-3 i (c+d x)} \left (1+e^{i (c+d x)}\right ) \sqrt{\sec (c+d x)} \left (i \left (1+e^{2 i (c+d x)}\right ) \left (C \left (16 e^{i (c+d x)}+20 e^{2 i (c+d x)}+9 e^{3 i (c+d x)}+3\right )-A e^{i (c+d x)} \left (-1+e^{i (c+d x)}\right )\right )+(A-5 C) e^{i (c+d x)} \left (1+e^{i (c+d x)}\right )^3 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )-4 i C e^{2 i (c+d x)} \sqrt{1+e^{2 i (c+d x)}} \left (1+e^{i (c+d x)}\right )^3 \, _2F_1\left (\frac{1}{2},\frac{3}{4};\frac{7}{4};-e^{2 i (c+d x)}\right )\right )}{12 a^2 d (\cos (c+d x)+1)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + C*Cos[c + d*x]^2)/((a + a*Cos[c + d*x])^2*Sqrt[Sec[c + d*x]]),x]

[Out]

((1 + E^(I*(c + d*x)))*(I*(1 + E^((2*I)*(c + d*x)))*(-(A*E^(I*(c + d*x))*(-1 + E^(I*(c + d*x)))) + C*(3 + 16*E
^(I*(c + d*x)) + 20*E^((2*I)*(c + d*x)) + 9*E^((3*I)*(c + d*x)))) + (A - 5*C)*E^(I*(c + d*x))*(1 + E^(I*(c + d
*x)))^3*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] - (4*I)*C*E^((2*I)*(c + d*x))*(1 + E^(I*(c + d*x)))^3*Sqr
t[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))])*Sqrt[Sec[c + d*x]])/(12*a^2
*d*E^((3*I)*(c + d*x))*(1 + Cos[c + d*x])^2)

________________________________________________________________________________________

Maple [A]  time = 1.096, size = 348, normalized size = 2.1 \begin{align*} -{\frac{1}{6\,{a}^{2}d}\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 2\,A\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}-24\,C \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}-10\,C\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}-24\,C \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) +2\,A \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+38\,C \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}-3\,A \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-15\,C \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+A+C \right ) \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-3}{\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^2/sec(d*x+c)^(1/2),x)

[Out]

-1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x
+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3-24*C*cos(1/2*d*x+1/2*c)^6-10*C*(
sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*
x+1/2*c)^3-24*C*cos(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(
cos(1/2*d*x+1/2*c),2^(1/2))+2*A*cos(1/2*d*x+1/2*c)^4+38*C*cos(1/2*d*x+1/2*c)^4-3*A*cos(1/2*d*x+1/2*c)^2-15*C*c
os(1/2*d*x+1/2*c)^2+A+C)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2
*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \cos \left (d x + c\right )^{2} + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)/((a*cos(d*x + c) + a)^2*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{C \cos \left (d x + c\right )^{2} + A}{{\left (a^{2} \cos \left (d x + c\right )^{2} + 2 \, a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sqrt{\sec \left (d x + c\right )}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + A)/((a^2*cos(d*x + c)^2 + 2*a^2*cos(d*x + c) + a^2)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)/(a+a*cos(d*x+c))**2/sec(d*x+c)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \cos \left (d x + c\right )^{2} + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^2/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)/((a*cos(d*x + c) + a)^2*sqrt(sec(d*x + c))), x)